giovedì 6 giugno 2019

IL SISTEMA ASSIOMATICO DI HILBERT PER LA GEOMETRIA

David Hilbert (1862-1943) è considerato uno dei matematici più influenti di sempre.

Il suo nome appare in svariati ambiti rilevanti della matematica, oltre che in fisica, ove l'introduzione degli spazi di Hilbert è stata fondamentale per lo sviluppo matematico della meccanica quantistica.
Leggendo il libro Hilbert, Alla ricerca di assiomi universali (della collana Geni della Matematica) di Carlos M. Madrid Casado, mi sono imbattuto in un interessantissimo passo relativo al sistema assiomatico introdotto da Hilbert.
Il presente post è un riassunto dei concetti fondamentali illustrati nel libro sopracitato.

martedì 14 maggio 2019

CARNEVALE DELLA MATEMATICA #129: LA MATEMATICA DEL XVIII E XIX SECOLO

"In matematica, le rivoluzioni sono eventi silenziosi. Nessuno scontro, nessun clamore. La notizia viene comunicata in qualche trafiletto ben lontano dalle prime pagine.
Donal O'Shea, autore del libro La congettura di Poincaré.



Benvenuti alla 129ª edizione del Carnevale della Matematica, la terza che ha l'onore di ospitare il blog Scienza e Musica!
Tale edizione ha nome in codice (dovuto al sommo Popinga) "il merlo intrepido" e cellula melodica (grazie a Dioniso Dionisi, che ritroveremo come partecipante):



La tematica scelta come filo conduttore del presente evento è, come tradizione nei carnevali ospitati su questo blog, davvero ad ampio respiro: "La matematica del XVIII e XIX secolo".
Naturalmente, apriremo la kermesse con una ricca introduzione sul tema (va specificato, sì ricca, ma comunque assai sintetica e incompleta rispetto alla colossale vastità della tematica affrontata), oltre alla consueta presentazione del numero della suddetta edizione, ovvero il 129.
Incominciamo dicendo che nelle università del Seicento il termine "matematiche" designava un'ampia varietà di discipline diverse, tra cui l'astrologia, la balistica, l'ottica e la meccanica.
Le università di quel tempo erano in grado di fornire i mezzi di sussistenza soltanto a un'élite ristretta di matematici.
Particolarmente significativo in tal senso è l'esempio della Svizzera di fine Seicento.
Qui era presente una singola università in tutto il paese e dunque anche la cattedra di matematica era una sola, quella di Basilea, ricoperta dal 1687 al 1705 da Jacob Bernoulli e poi, dal 1705 al 1748, da suo fratello Johann (per saperne di più sull'incredibile famiglia Bernoulli, cliccate qui).





Nel corso della seconda metà del XVII secolo si svilupparono tuttavia alcune alternative, per mezzo dell'allestimento di nuovi luoghi di elaborazione e trasmissione del sapere.
Tra questi luoghi spiccavano le accademie, tra cui particolare importanza ebbe l'Académie Royale des Sciences a Parigi per opera di Jean-Baptiste Colbert, il potente ministro di Luigi XIV.
Quale era la sostanziale differenza tra questa Accademia francese e, per esempio, la Royal Society di Londra?
L'originalità del modello di Accademia francese stava nel fatto che questa veniva direttamente finanziata dallo Stato!
Nel XVIII secolo l'istituzione di accademie ispirate al modello francese offriva a qualche matematico la prospettiva di un lavoro remunerato, tuttavia i posti stipendiati rimanevano ancora esclusiva di una piccola cerchia privilegiata.
Per esempio, il tedesco Gottfried Wilhelm von Leibniz (1646-1716), uno dei padri dell'analisi matematica assieme a Newton (1642-1727), si impegnò tutta la vita a promuovere la creazione di società scientifiche, attraverso memoranda e programmi da sottoporre ai principi europei e non.
Negli ultimi anni del XVII secolo Leibniz si era sempre più interessato alla Russia e al suo zar, Pietro il Grande (1672-1725), il quale riteneva fondamentale il ruolo delle scienze nel processo di modernizzazione del suo gigantesco impero.
Dopo la morte del grande matematico tedesco, lo zar cercò di mandare avanti, attraverso intermediari, tale processo di collaborazione scientifica con gli intelletuali europei.
L'8 febbraio 1724, il Senato russo approvò poi il progetto di Accademia (a San Pietroburgo) proposto dal medico di corte, Laurentius Blumentrost, che ne divenne il primo presidente.
L'Accademia si sarebbe dovuta basare su 3 elementi costitutivi:

1) l'istituto accademico di ricerca (ispirato al modello delle Accademie di Parigi e Berlino);
2) l'università;
3) il ginnasio.

Gli ultimi 2, però, ebbero un fulmineo declino.
Al suo esordio, l'Accademia russa contava 23 membri, 7 dei quali matematici.
Tra questi era presente Jacob Hermann, allievo di Jacob Bernoulli, pupillo di Leibniz e professore di matematica a Francoforte sull'Oder.
L'invito ad unirsi all'Accademia venne inviato pure a Johann Bernoulli, ma quest'ultimo rifiutò.
Tuttavia, egli convinse 2 dei suoi figli, Daniel e Nicolaus (II), a mettersi al servizio dello zar.
Sfortunatamente Pietro il Grande, morto il 18 gennaio 1725, non poté vedere compiuta l'opera che tanto bramava, la quale fu portata a termine con successo dalla sua vedova, Caterina I.
Al termine dell'estate del 1725 un certo numero di accademici si era già stabilito a San Pietroburgo.
Tra questi c'era nientemeno che Christian Goldbach (noto per la celebre congettura ancora irrisolta che porta il suo nome), il quale fu incaricato di redigere i verbali in latino e di occuparsi delle pubblicazioni e della corrispondenza.
Alla fine, Jacob Hermann ricoprì la cattedra di matematica, Nicolaus Bernoulli quella di meccanica, Daniel Bernoulli fu professore di fisiologia ed anatomia sino a quando, nel 1731, a seguito della partenza di Hermann, ottenne la cattedra di matematica.
La cerimonia di inaugurazione dell'Accademia ebbe luogo il 7 gennaio 1726, in assenza dell'imperatrice.
Una seconda seduta pubblica (questa volta in presenza di Caterina I) si concretizzò il 12 agosto.
In tal occasione, Hermann presentò una dissertazione in latino (pubblicata però nel 1735) concernente l'origine e lo sviluppo della geometria.
La prima parte della presentazione di Hermann riguardò la storia della geometria dall'antichità al XVIII secolo.

Questi distinse 3 epoche fondamentali:

1) l'infanzia della geometria: inizia con Talete e Pitagora, culminando poi con Euclide, Archimede e Apollonio;
2) la fase medium ævum (che seguì uno hiatus, ossia un periodo di ristagno della geometria): si apre con Viète e risulta dominata dalla figura di Descartes;
3) l'epoca della geometria sublimior: inaugurata dalla pubblicazione della Nova methodus (1684) di Leibniz e ancora in corso.

Hermann mise in evidenza il rigore dei metodi degli antichi, tuttavia li reputò goffi se comparati ai potenti e rapidi metodi del calcolo differenziale e integrale, arrivando persino ad asserire che la scrupolositas in demonstrando della geometria greca rappresentò un ostacolo all'innovazione.
Anche il grandissimo Leonhard Euler (1703-1783) [noi italiani spesso lo chiamiamo Eulero], grazie all'invito di Daniel Bernoulli, prese posto all'Accademia di San Pietroburgo, precisamente a partire dal giugno 1727.
Il primo periodo trascorso da questi in Russia fu davvero molto produttivo: si contano infatti una cinquantina di memorie ed opere apparse nel periodo compreso tra il 1727 e il 1741.
In particolare, meritevole di menzione è la sua Mechanica, sive motus scientia analytice exposita in 2 tomi del 1736.
Quest'opera rappresentò un capisaldo nella storia della meccanica, oltre al fatto che permise al giovane matematico di ottenere numerosi riconoscimenti.
Nel 1741, l'incertezza sul destino dell'Accademia russa legato alla situazione politica di quel momento portò Eulero ad accettare l'offerta di Federico II di Prussia.
Quest'ultimo era desideroso di innestare una riorganizzazione dell'Accademia di Berlino.
Non a caso il suddetto sovrano amava circondarsi di persone colte, tra cui brillanti filosofi e abili poeti.
Tuttavia sussisteva un conflitto di opinioni tra il sovrano e il matematico inerente all'utilità delle "matematiche superiori", ovvero l'analisi matematica.

giovedì 9 maggio 2019

CARNEVALE DELLA MATEMATICA N.129 - 3ª (ED ULTIMA) CALL FOR PAPERS

Questa è l'ultima chiamata per coloro che abbiano intenzione di partecipare al Carnevale della Matematica n.129, che sarà dedicato alla matematica del XVIII e XIX secolo.
Ormai mancano pochi giorni alla pubblicazione (14 maggio, se riesco, allo scoccare della mezzanotte) e ancora meno per l'invio dei contributi.
Avete infatti tempo sino alle 23:59 del 12 maggio per segnalarmi i vostri contributi (in tema oppure no) all'indirizzo mail:

leonardo92.universo@gmail.com

Per maggiori informazioni, vi rimando alla prima call for papers.
A prestissimo col Carnevale della Matematica qui su Scienza e Musica!

Leonardo Petrillo

mercoledì 8 maggio 2019

IL FANTASTICO ZOO DELLA GEOMETRIA

Era una mattina d'estate, davvero afosa.
Il Sole risplendeva mostrando tutta la sua imponenza nel sereno cielo. Si trattava della giornata perfetta per la gita in uno zoo.
Bernardo era tutt'altro che contento di parteciparvi, d'altronde aveva già avuto occasione di girare per diversi zoo sin da piccolo e dunque riteneva non potesse esserci più nulla da scoprire e che potesse solleticare la sua curiosità.
"Ma come, non sei curioso di vedere le maestose tigri malesi?" gli domandò un compagno di classe, seduto affianco sull'autubus che li avrebbe condotti nel meraviglioso parco naturale.
"Già viste tante volte, vorrei osservare qualcosa di nuovo ed altrettanto emozionante" rispose celermente Bernardo.
L'orario di arrivo era previsto per le 10; nel mentre il ragazzo ascoltò un po' di musica classica, precisamente si dilettò col meraviglioso Concerto per pianoforte e orchestra n.3 di Rachmaninov.



Giunti allo zoo, l'esplorazione cominciò immediatamente tra elefanti, scimpanzé, leoni, zebre e chi più ne ha più ne metta.
La mente curiosa di Bernardo purtroppo non era abbastanza stimolata da renderlo molto felice, tuttavia, ad un tratto, qualcosa di bizzarro accadde.
Una voce risuonò all'interno del parco naturale: "Salve gentili visitatori; unicamente per oggi estrarremo tra voi un vincitore che potrà accedere alla nostra ala di massima segretezza! Per prenotarvi sarà sufficiente firmare un foglio che il nostro attento staff vi fornirà".
Bernardo non ci pensò neanche un secondo e appose la firma non appena ricevette il foglio.
Non si trattava di un banale documento di iscrizione; ai margini del foglio comparivano infatti strane figure geometriche.
Dopo solo mezz'ora furono raccolti tutti i fogli e si passò all'estrazione del vincitore. "UN MINUTO DI ATTENZIONE" echeggiò la solita voce dell'annunciatore. "IL VINCITORE È BERNARDO R.".
Urla ed applausi scrosciarono nei confronti del ragazzo.
"Prego, mi segua" affermò un membro dello staff dello zoo, il cui compito era condurre Bernardo nell'ala segreta.

domenica 5 maggio 2019

ONE GOOD PIECE OF MUSIC EVERY DAY: WITH A SONG IN MY HEART/JANE FROMAN

Rieccoci ad un nuovo appuntamento musicale quotidiano.




















Stasera segnaliamo il brano "With A Song In My Heart" tratto originariamente dal musical del 1929 Spring Is Here di Rodgers e Hart.
La versione che andiamo ad ascoltare è quella invece derivante dal film del 1952 With A Song In My Heart, che racconta la biografia della cantante e attrice Jane Froman, una delle interpreti di maggior successo di questa canzone.
Buon ascolto!



Alla prossima!