domenica 6 ottobre 2019

MERAVIGLIE MATEMATICHE: LO SPAZIOTEMPO DI MINKOWSKI

La matematica è spesso fonte di stupore e meraviglia.
Pochi mesi fa abbiamo per esempio osservato (cliccate qui) come singolari forme geometriche quali le pseudosfere possano ispirare spettacolari costruzioni artistiche.
In questo post analizzeremo (nel modo più semplice possibile, ma comunque rigoroso) una meraviglia matematica meno appariscente, ma sicuramente dotata di grande fascino: lo spaziotempo di Minkowski.
I concetti di spazio e tempo sono sempre stati al centro di riflessioni filosofiche e scientifiche.
Se ricordate, ne parlammo un po' nel post intitolato "Spazio e Tempo: Le "forme a priori" della conoscenza".
Abbiamo anche avuto modo di ospitare, proprio qui su Scienza e Musica, un Carnevale della Fisica dedicato allo spazio (cliccate qui) e un Carnevale della Letteratura dedicato al tempo (cliccate qui).
Per introdurre lo spaziotempo per bene dobbiamo compiere una piccola premessa.
Sapete bene che nel 1905 Albert Einstein diede alla luce la sua teoria della relatività ristretta (o speciale).
Qualcuno ricorderà anche che la base matematica della suddetta teoria è fondata sulle cosiddette trasformazioni di Lorentz (chi non ricordasse bene può leggere qui).
Ricordiamo poi che la relatività ristretta assume 2 postulati fondamentali:

1) l'invarianza di forma delle leggi fisiche in tutti i sistemi di riferimento inerziali;
2) la luce si propaga (nel vuoto) a velocità costante (denotata con c), indipendentemente da quale sia lo stato di moto della sorgente o dell'osservatore.

Le conseguenze fondamentali di tutto ciò sono 3:

1) la relatività della simultaneità;
2) la contrazione delle lunghezze;
3) la dilatazione dei tempi.

Rinfreschiamo brevemente cosa significano tali concetti.
Quando parliamo normalmente di eventi simultanei, pensiamo chiaramente ad eventi che accadono nello stesso istante temporale.
Ciò è palesemente corretto nell'ambito della fisica classica newtoniana.
Il problema sorge quando si considerano velocità abbastanza vicine a quella della luce.
Supponiamo infatti ci sia un osservatore S, fermo, inerziale, che stia osservando due eventi simultanei:






Adesso però supponiamo ci sia un osservatore S' (sempre inerziale) in movimento rispetto ad S lungo l'asse x con velocità costante V.
Per quest'ultimo, sulla base delle trasformazioni di Lorentz, le coordinate dei 2 eventi saranno:
Primo evento













Secondo evento













ove γ è naturalmente il fattore (o termine) di Lorentz, esprimibile esplicitamente attraverso la relazione:






Avrete notato che per l'osservatore S' tra i 2 eventi risulterà una differenza temporale pari a:





Ecco perché si parla di relatività della simultaneità: eventi simultanei per un osservatore (inerziale) non lo sono per un altro!
La simultaneità è dunque relativa per i sistemi di riferimento inerziali.
Se consideriamo il caso in cui V sia davvero molto piccola comparata alla velocità della luce c, avremmo che:







e pertanto ritroveremmo la simultaneità della fisica classica.
Se andassimo invece a considerare la velocità V davvero vicinissima a quella della luce, l'intervallo temporale misurato da S' tenderebbe ad infinito.
È inoltre palese che gli eventi risultano simultanei per entrambi gli osservatori anche nella teoria della relatività quando x₁ = x₂.
L'altra conseguenza fondamentale della relatività ristretta è la contrazione delle lunghezze (o contrazione di Lorentz-Fitzgerald): il risultato della misura della lunghezza L di un corpo da parte di un osservatore mobile S (con velocità V) è inferiore alla lunghezza L0 che S' misura nel sistema di riferimento a riposo del corpo considerato.




















La formula alla base del fenomeno è:





Una roba abbastanza simile accade per quanto concerne il tempo: la dilatazione dei tempi.
In particolare, la misura della separazione temporale (t₂' - t₁') tra 2 eventi da parte di un osservatore mobile fornisce intervalli di tempo più lunghi rispetto ad un osservatore solidale con l'orologio.
La legge matematica che sta alla base del fenomeno è:




La prima diretta evidenza sperimentale della dilatazione dei tempi si è manifestata con gli esperimenti di rilevazione dei muoni prodotti nella fasce esterne dell'atmosfera terrestre, ad opera dei raggi cosmici.
I muoni sono particelle elementari che fanno parte, assieme all'elettrone, al tauone e al neutrino, della famiglia di particelle chiamata dei leptoni.
Inoltre sono particelle dotate di spin semintero (di spin abbiamo parlato un po' qui), dunque sono classificate come fermioni.
La loro peculiarità più interessante in tal contesto è data però dal fatto che sono particelle altamente instabili, che decadono dando vita ad altre particelle, con un tempo di dimezzamento di circa




tempo questo misurato nel sistema di riferimento a riposo dei muoni.
Nel 1941 un rilevatore posto sul monte Washington, nel New Hampshire, a circa 1850 metri rispetto al livello del mare, misurò un flusso di circa 570 muoni all'ora.
Gli scienziati inizialmente pensarono che posizionando il rilevatore ad altitudini inferiori si sarebbe dovuto riscontrare un flusso meno intenso.
Si stimava che a livello del mare si sarebbe dovuto riscontrare un flusso di circa 35 muoni all'ora.
ATTENZIONE: se ne osservarono ben 400 di muoni all'ora!
Perchè tale enorme disparità rispetto a quanto si pensava? Come potevano essere sopravvisuti così tanti muoni in un viaggio decisamente lungo se confrontato alla loro vita media?
La risposta sta nel fatto che nel sistema di riferimento dei muoni il tempo trascorso è assai minore a quello misurato da un osservatore solidale con la Terra.
Abbiamo dunque osservato brevemente le conseguenze fondamentali della teoria della relatività ristretta.
Addentriamoci ora nel nocciolo della questione: lo spaziotempo.