giovedì 8 febbraio 2024

LA CATENA DI SPIN DI HEISENBERG E I SISTEMI INTEGRABILI: UNA “SEMPLICE” PANORAMICA

In questo post scopriremo l'importante catena di spin di Heisenberg e capiremo in generale cosa sia un sistema fisico integrabile.
Si tratta di argomenti matematicamente e fisicamente piuttosto avanzati, ma qui ci focalizzeremo solo sugli aspetti puramente essenziali e "semplici" e scopriremo gli interessanti dettagli storici attorno a tali concetti. I lettori interessati potranno approfondire gli aspetti maggiormente tecnici guardando i riferimenti segnalati in fondo al post.
Partiamo col dire che la catena di spin di Heisenberg è un modello quantistico costituito da una catena che consiste di un numero $L$ di siti. 
Ciascun sito, che denotiamo con $l$, contiene uno spin $s = 1/2$.
Uno stato di spin può essere rappresentato da $| \downarrow \rangle$ oppure da $| \uparrow \rangle$ o da una qualsivoglia combinazione lineare di questi due.

Catena di spin chiusa unidimensionale. Fonte: bit.ly/4b4uTMx
 














Nello specifico, infatti, la rappresentazione matematica di uno spin $s$ è data dalla semplice relazione:






La catena di spin di Heisenberg è l'esempio fondamentale delle cosiddette catene di spin integrabili.
Per capirci qualcosa dobbiamo prima comprendere cosa sia un sistema fisico integrabile.
Una definizione molto generale di sistema fisico integrabile è quella di un modello fisico che è risolubile in modo esatto, ovvero senza far ricorso a metodi di approssimazione.
Già Newton fu in grado per esempio di risolvere il cosiddetto problema di Keplero in modo esatto, ma per una prima formalizzazione di questo nuovo rilevante ambito di ricerca scientifico si dovette aspettare il XIX secolo con Joseph Liouville.
Il matematico francese fece infatti uso delle cosiddette "quadrature". In sostanza egli si rese conto che sistemi hamiltoniani (dunque siamo nell'ambito della meccanica classica) potessero essere risolti mediante l'uso di un numero finito di operazioni algebriche ed integrazioni.
Il culmine del suddetto studio è fornito dal cosiddetto teorema di Liouville-Arnold, per la cui spiegazione vi rimando direttamente a Wikipedia
A noi però interessa entrare nell'ambito quantistico, cioè comprendere in particolare se e quando una teoria quantistica dei campi (abbreviata QFT) possa essere integrabile.
Innanzitutto diciamo che esistono sì teorie quantistiche di campo integrabili, ma esse costituiscono un insieme assai limitato.
Infatti 2 sono le fondamentali peculiarità che una QFT deve avere affinché possa essere integrabile:

1) deve possedere un numero infinito di cariche conservate (qui ci limitiamo a dire che è qualcosa intimamente legato al famoso teorema di Noether);
2) deve essere definita in 1+1 dimensioni, cioè 1 temporale ed una spaziale.

Soffermiamoci un attimo su quest'ultimo punto giacché è assai rilevante e stuzzicante.
Una domanda lecita a questo punto infatti sarebbe: perché dobbiamo considerare proprio 2 dimensioni e non 3, 4 o un qualsivoglia numero?
La risposta risiede nel concetto di matrice S.
S sta per scattering (ne parlammo un po' qui). Cerchiamo qui però di indirizzare un po' meglio, a parole povere, il concetto nell'ambito della QFT.
Lo scattering è il processo di interazione tra varie particelle (ma anche antiparticelle).
Generalmente si definisce uno stato iniziale, ossia quello in cui troviamo le particelle prima che avvenga un'interazione fra loro, ed uno stato finale ove troviamo le particelle risultanti dall'interazione. Si veda a tal proposito la seguente figura.

Illustrazione di uno scattering 2 → 2. Il tempo scorre dal basso verso l'alto. Figura tratta da https://arxiv.org/abs/1607.06110.

















Nella figura abbiamo appunto un esempio di scattering di 2 particelle che produce 2 particelle (nel semplice caso raffigurato trattasi di particelle tutte con la stessa massa). Nello specifico si vedono due particelle che costituiscono lo stato iniziale e contraddistinte dai momenti lineari $k_1$ e $k_2$, dopodiché avviene l'interazione, esplicitamente denotata dal cerchio, e infine lo stato finale formato da particelle aventi rispettivamente momenti $k_3$ e $k_4$.
L'oggetto matematico alla base della descrizione dell' interazione tra le particelle è proprio la matrice S, che è un operatore che va dunque a stabilire una mappa tra stato iniziale e stato finale.
In simboli, tale relazione si può esprimere nel seguente modo:






L'aspetto cruciale che caratterizza la matrice S in 1+1 dimensioni è la sua proprietà di "fattorizzabilità" non banale, ovvero il fatto che uno scattering di $n$ particelle che danno luogo ad $n$ particelle possa essere ricondotto ad un prodotto di "semplici" scattering $2 \rightarrow 2$.
Nel 1967 Sidney Coleman e Jeffrey Mandula pervennero ad un importantissimo risultato: il cosiddetto teorema di Coleman-Mandula, cioè un rilevante esempio di "teorema no-go" in fisica.
In tale contesto il suddetto teorema ci dice essenzialmente che se ci spingiamo in 3 o più dimensioni complessive, l'unico modo di avere una QFT integrabile, cioè di avere una matrice S fattorizzabile, è considerare teorie senza la presenza di interazioni fra particelle e con una matrice S banale, ossia equivalente alla matrice identità.
Pertanto, ciò che rende speciale il caso delle 1+1 dimensioni è proprio il fatto di poter considerare teorie che includano interazioni e che abbiano una matrice S avente forma non banale, generando così un intero campo di ricerca per gli studiosi.