mercoledì 10 aprile 2024

IL PARADOSSO DI BERTRAND

Tra i grandi problemi della matematica c'è sicuramente il paradosso di Bertrand (così denominato da Poincaré).
Esso fu formulato per la prima volta dal matematico francese Joseph Louis François Bertrand (1822-1900) nella sua opera, datata 1889, intitolata Calcolo delle probabilità.
Immaginiamo di possedere 3 scatole identiche, ciascuna avente 2 scompartimenti ed una medaglia inserita in ciascuno di essi.
Supponiamo che:

- cassa n.1: contiene 2 medaglie d'oro;
- cassa n.2: contiene 1 medaglia d'oro ed 1 d'argento;
- cassa n.3: contiene 2 medaglie d'argento.

Scegliendo una scatola a caso ne consegue ovviamente che la probabilità che i compartimenti della scatola selezionata contengano medaglie diverse è 1/3.


Ma ci si potrebbe anche chiedere quale sia la probabilità che nel secondo scompartimento della scatola vi sia una medaglia diversa dal primo scompartimento.
Ingenuamente si potrebbe immaginare che il primo scompartimento, per esempio, contenga una medaglia d'oro, dunque il secondo una d'oro o d'argento, con relativa probabilità pari a 1/2, il 50%, come quella del lancio di una moneta.
Tuttavia tale soluzione è sbagliata (la soluzione corretta è 1/3)! Perché?
Beh, non abbiamo stabilito che vi sia equiprobabilità tra i casi possibili.
In altre parole, gli errori a cui ci conducono tali ingenue argomentazioni si devono al fatto che non abbiamo definito sin dal principio in modo rigoroso lo spazio campionario, ovvero l'insieme totale dei risultati per un esperimento aleatorio.
Da Wikipedia osserviamo la seguente buona rappresentazione del problema appena descritto (il cosiddetto paradosso delle 3 scatole di Bertrand, spesso introdotto come paradosso delle 3 carte) con la richiesta opposta (cioè la probabilità di trovare una medaglia dello stesso tipo).

















Il suddetto esempio è davvero uno standard nella teoria della probabilità, tanto che la soluzione risulta intimamente legata ai cosiddetti assiomi di Kolmogorov, per la cui spiegazione vi rimando a Wikipedia
Analoghe fallacie si manifestano se l'esperimento di natura aleatoria che stiamo analizzando non è correttamente definito e può quindi essere interpretato in modi diversi, risultando decisamente ambiguo.
Quanto appena descritto rappresenta l'idea alla base del vero e proprio paradosso di Bertrand.
Tale paradosso è decisamente rilevante non solo in ambito puramente matematico ma anche nel mondo della fisica, in quanto ci mostra chiaramente l'ambiguità di alcune idee apparentemente intuitive spesso invocate a sproposito in ambito fisico.
Ad esempio sarebbe senza senso buttare a caso una frase del tipo "è naturale assumere che una densità di probabilità sia uniforme" senza una rigorosa spiegazione di natura fisica.
A tal proposito è di frequente utilizzo in ambito fisico il cosiddetto "principio di indifferenza" di Laplace, il quale viene definito dall'economista britannico John Maynard Keynes, in A Treatise on Probability (1921), come segue:

"If there is no known reason for predicating of our subject one rather than another of several alternatives, then relatively to such knowledge the assertions of each of these alternatives have an equal probability".   

Il principio di indifferenza, volente o nolente, è stato usato efficacemente in una moltitudine di applicazioni, dal lancio di monete e giochi d'azzardo al conteggio delle configurazioni nella meccanica statistica. 
Ciò però non ha azzerato i dibattiti filosofici sulla sua applicabilità e correttezza; basti pensare proprio agli studi effettuati da Bertrand.
Scopriamo ora la versione originale del paradosso di Bertrand, di natura geometrica, che riportiamo nell'ottima descrizione effettuata da Boffetta e Vulpiani nel testo Probabilità in Fisica:

"Si consideri il problema: dato un cerchio di raggio unitario si disegni una corda a caso. Calcolare la probabilità che la lunghezza della corda sia maggiore di $\sqrt{3}$ (il lato del triangolo equilatero inscritto).

Prima risposta. Prendiamo un punto $P$ sul bordo del disco. Tutte le corde che partono da P sono parametrizzate da un angolo $\theta$, vedi Fig. 1.3a.



















Se si vuole che la corda sia più lunga di $\sqrt{3}$ l'angolo $\theta$ deve essere compreso in un settore di 60 gradi in un intervallo di 180, quindi la probabilità è 60/180 = 1/3.

Seconda risposta. Consideriamo un punto $P$ su un raggio e la corda passante per $P$ e perpendicolare al raggio, vedi Fig. 1.3b. La corda è più lunga di $\sqrt{3}$ se il suo centro $P$ è nella parte interna (di lunghezza 1/2), quindi poiché il raggio è 1 la probabilità è 1/2.

Terza risposta. Se il centro della corda cade nel disco di raggio 1/2 allora la corda è più lunga di $\sqrt{3}$, vedi Fig. 1.3c, poiché l'area di questo cerchio è π/4 mentre l'area totale è π, la probabilità è 1/4.

Qual è la risposta giusta? Semplicemente la domanda è mal posta, perché “si disegni una corda a caso” è decisamente troppo vago, ed in ognuna delle tre risposte c'è un'assunzione nascosta che sembra naturale, ma è invece arbitraria. Nella prima si è assunto che l'angolo $\theta$ sia uniformemente distribuito, nella seconda che il centro della corda sia uniformemente distribuito sul diametro, mentre nella terza che il centro della corda sia uniformemente distribuito all'interno del cerchio."

In altri termini, si è constatato come non esista un unico metodo di selezione, pertanto non esiste un'unica soluzione! 
Abbiamo nello specifico 3 soluzioni rinvenute da Bertrand corrispondenti a 3 diversi metodi di selezione e, qualora non ci venga fornita alcuna informazione aggiuntiva, l'unica conclusione logica è che non c'è un metodo (e dunque una soluzione) migliore di un altro.
Abbastanza recentemente, nel 2014, Diederik Aerts e Massimiliano Sassoli de' Bianchi hanno pubblicato un paper (cliccate qui per leggerlo) nel quale hanno mostrato che il paradosso di Bertrand contiene in fin dei conti 2 problemi diversi: un problema "facile" ed uno "difficile"!
Il problema "facile" può essere risolto formulando la domanda di Bertrand in termini sufficientemente precisi, permettendo in tal modo una modellizzazione non ambigua dell’entità soggetta al processo aleatorio.
Dopodiché, una volta risolto il problema "facile", gli studiosi hanno mostrato che si spiana così la strada alla risoluzione del problema "difficile", a patto che il principio di indifferenza venga applicato non ai risultati dell'esperimento, bensì ai diversi possibili “modi di selezionare” un'interazione tra l'entità sotto indagine e quella che ha prodotto la randomizzazione.
Concludiamo riportando il bel video sul paradosso di Bertrand presente sul canale YouTube Numberphile

 

----------------------------------------------------------------------------------------
Fonti essenziali:

Probabilità in Fisica. Un'introduzione di Guido Boffetta e Angelo Vulpiani
- Kolmogorov. La dualità tra caos e determinismo di Manuel García Piqueras

Nessun commento:

Posta un commento